Reactive power management in photovoltaic installations connected to
low-voltage grids to avoid active power curtailment.

J.F. Gómez-González, D. Cañadillas-Ramallo, B. González-Díaz, J.A. Méndez-Pérez, J. Rodríguez, J. Sánchez and R. Guerrero-Lemus

2018/04/20

Abstract

Photovoltaic (PV) inverters are traditionally designed to operate with unity power factors. In order to use reactive power capabilities of smart inverters, in this work two strategies are analysed: limiting the amount of active power delivered or oversizing the inverter. The first of these options implies a reduction in the PV production and therefore, it would lead to reduced earnings for the PV system owner. On the other hand, oversizing the PV inverter allows having reactive power compensation capabilities, while delivering full power output from its PV field.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 16)
Pages: 5-11 Date of Publication: 2018/04/20
ISSN: 2172-038X Date of Current Version:2018/03/23
REF: PL3-18 Issue Date: April 2018
DOI:10.24084/repqj16.003 Publisher: EA4EPQ

Authors and affiliations

J.F. Gómez-González1, D. Cañadillas-Ramallo2, B. González-Díaz1, J.A. Méndez-Pérez3, J.
Rodríguez4, J. Sánchez4 and R. Guerrero-Lemus2*
1. Departamento de Ingeniería Industrial, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna (ULL), Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna (ULL), (Tenerife), España.
2. Departamento de Física, Facultad de Ciencias, Universidad de La Laguna (ULL), (Tenerife), España
3. Departamento de Ingeniería Informática y de Sistemas, Escuela Superior de Ingeniería y Tecnología,
Universidad de La Laguna (ULL), (Tenerife), España.
4. ENDESA Distribución Eléctrica SL. Madrid. España

Key words

Photovoltaic, reactive power management, electrical systems.

References

[1] M. Mejbaul Haque and P. Wolfs, “A review of high PV penetrations in LV distribution networks : Present status , impacts and mitigation measures,” Renew. Sustain. Energy Rev., vol. 62, pp. 1195–1208, 2016.
[2] T. Stetz, M. Rekinger, and I. T. Theologitis, “Transition from Uni-Directional to Bi-Directional Distribution Grids,” 2014,
http://ieapvps.org/fileadmin/dam/intranet/ExCo/Transition_from_uni_dire
ctional_to_bi_directional_distribution_grids_REPORT_PVPS_T14_03_2014.pdf
, consulted in January 2018.
[3] Y. P. Agalgaonkar, B. C. Pal, and R. A. Jabr, “Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 182–192, 2014.
[4] T. Ehara, “Overcoming PV grid issues in the urban areas,”2009. http://www.iea-pvps-task10.org/IMG/pdf/rep10_06.pdf,
consulted in January 2018.
[5] National Renewable Energy Laboratory (NREL), “Advanced Inverter Functions To Support High Levels of Distributed Solar Policy and Regulatory the Need for Advanced,” 2014. https://www.nrel.gov/docs/fy15osti/62612.pdf, consulted in
January 2018.
[6] K. Turitsyn, P. Sulc, and M. Chertkov, “Local Control of Reactive Power by Distributed Photovoltaic Generators,” pp. 79–84.
[7] E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera, P. Rodriguez, and R. Teodorescu, “Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids,” IEEE J. Photovoltaics, vol. 1, nº. 2, pp. 174–182, 2011.
[8] A. Etxeberria, I. Vechiu, H. Camblong, J. M. Vinassa, and H. Camblong, “Hybrid Energy Storage Systems for renewable Energy Sources Integration in microgrids: A review,” 2010 Conf. Proc. IPEC, pp. 532–537, 2010.
[9] L. Schwartfeger and D. Santos-Martin, “Review of Distributed Generation Interconnection Standards,” IEEE Electr.
Power Conf., vol. 172, p. 13, 2014.