|
 |
Reactive power
management in photovoltaic installations connected to
low-voltage grids to avoid active power curtailment.
J.F.
Gómez-González, D. Cañadillas-Ramallo, B.
González-Díaz, J.A. Méndez-Pérez,
J. Rodríguez, J. Sánchez and R. Guerrero-Lemus
2018/04/20
|

Abstract
Photovoltaic (PV) inverters are traditionally
designed to operate with unity power factors. In order to use reactive
power capabilities of smart inverters, in this work two strategies are
analysed: limiting the amount of active power delivered or oversizing
the inverter. The first of these options implies a reduction in the PV
production and therefore, it would lead to reduced earnings for the PV
system owner. On the other hand, oversizing the PV inverter allows having
reactive power compensation capabilities, while delivering full power
output from its PV field.
Published in: Renewable Energy
& Power Quality Journal (RE&PQJ, Nº. 16) |
Pages: 5-11 |
Date of Publication: 2018/04/20 |
ISSN: 2172-038X |
Date of Current Version:2018/03/23 |
REF: PL3-18 |
Issue Date: April 2018 |
DOI:10.24084/repqj16.003 |
Publisher: EA4EPQ |
Authors and affiliations
J.F. Gómez-González1, D. Cañadillas-Ramallo2,
B. González-Díaz1, J.A. Méndez-Pérez3, J.
Rodríguez4, J. Sánchez4 and R. Guerrero-Lemus2*
1. Departamento de Ingeniería Industrial, Escuela Superior
de Ingeniería y Tecnología, Universidad de La Laguna (ULL),
Escuela Superior de Ingeniería y Tecnología, Universidad
de La Laguna (ULL), (Tenerife), España.
2. Departamento de Física, Facultad de Ciencias, Universidad de
La Laguna (ULL), (Tenerife), España
3. Departamento de Ingeniería Informática y de Sistemas,
Escuela Superior de Ingeniería y Tecnología,
Universidad de La Laguna (ULL), (Tenerife), España.
4. ENDESA Distribución Eléctrica SL. Madrid. España
Key words
Photovoltaic, reactive power management, electrical systems.
References
[1] M. Mejbaul Haque and P. Wolfs, A
review of high PV penetrations in LV distribution networks : Present status
, impacts and mitigation measures, Renew. Sustain. Energy Rev.,
vol. 62, pp. 11951208, 2016.
[2] T. Stetz, M. Rekinger, and I. T. Theologitis, Transition from
Uni-Directional to Bi-Directional Distribution Grids, 2014,
http://ieapvps.org/fileadmin/dam/intranet/ExCo/Transition_from_uni_dire
ctional_to_bi_directional_distribution_grids_REPORT_PVPS_T14_03_2014.pdf,
consulted in January 2018.
[3] Y. P. Agalgaonkar, B. C. Pal, and R. A. Jabr, Distribution voltage
control considering the impact of PV generation on tap changers and autonomous
regulators, IEEE Trans. Power Syst., vol. 29, no. 1, pp. 182192,
2014.
[4] T. Ehara, Overcoming PV grid issues in the urban areas,2009.
http://www.iea-pvps-task10.org/IMG/pdf/rep10_06.pdf,
consulted in January 2018.
[5] National Renewable Energy Laboratory (NREL), Advanced Inverter
Functions To Support High Levels of Distributed Solar Policy and Regulatory
the Need for Advanced, 2014. https://www.nrel.gov/docs/fy15osti/62612.pdf,
consulted in
January 2018.
[6] K. Turitsyn, P. Sulc, and M. Chertkov, Local Control of Reactive
Power by Distributed Photovoltaic Generators, pp. 7984.
[7] E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera,
P. Rodriguez, and R. Teodorescu, Local reactive power control methods
for overvoltage prevention of distributed solar inverters in low-voltage
grids, IEEE J. Photovoltaics, vol. 1, nº. 2, pp. 174182,
2011.
[8] A. Etxeberria, I. Vechiu, H. Camblong, J. M. Vinassa, and H. Camblong,
Hybrid Energy Storage Systems for renewable Energy Sources Integration
in microgrids: A review, 2010 Conf. Proc. IPEC, pp. 532537,
2010.
[9] L. Schwartfeger and D. Santos-Martin, Review of Distributed
Generation Interconnection Standards, IEEE Electr.
Power Conf., vol. 172, p. 13, 2014.

|
|