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Abstract. Crushing is an important operation in a variety of 

industrial applications since it requires a significant amount of 
energy to blast materials into certain sizes of shattered boulders. 

Because accurate predictions of the energy required to manage 
this process are rare in the literature, there have been few efforts 
to reduce power consumption at the crushing stage by using a jaw 
crusher, which is the most common type of crusher. The 
availability of precise power predictions, as well as the 
optimization of initial crushing processes, would provide useful 
tools for selecting the best crusher for a given application. 
The Adaptive Neuro-Fuzzy Interference System is used to predict 

the particular power consumption of a jaw crusher in this study 
(ANFIS). Apart from the power required for rock comminution, 
the analysis includes an optimization of the crushing process to 
lower the projected power. In comparison to real data, the results 
show that the model is successful in correctly estimating 
comminution power with an accuracy of more than 96%. The 
findings provide valuable information that can be applied to 
future studies. 
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1. Introduction 

 
The size reduction of feed rocks is an important 

mechanical operation in the processing of raw materials in 

several industries such as mining and the cement industry. 

The rock blasting process is the most basic and first 

important stage in various industrial sectors, in which 

enormous rocks are broken and divided into tiny pieces 
before being sent to the processing plant. This procedure 

can be carried out using mechanical equipment, which are 

generally referred to as crushers. The primary crushers are 

capable of handling huge rocks of large size (typically 

around 1.5 m) to provide blasted rocks with size reduction 

ratio varying from 3 to 10  [1]. The maximum rock size 

fed to the crusher compared to the maximum rock size 

provided by the crusher is known as the rock size 

reduction ratio. The crushing process is a multi-stage dry 

process where each stage has small size reduction ratio 

within range from 3 to 6. Rock breakage is accomplished 
by crushing, impact, and abrasion corresponding to known 

modes of rock fracture; including compressive, tensile, and 

shear. The applied mode can be defined according to the 

rock mechanics and the load type. Rocks meet crushing 

(or compressive failure) where rocks of two distinct size 

ranges are obtained. In this mode, the coarse rocks are 
produced due to tensile failure, while the small size rocks 

result from compressive failure occurring at loading 

points or due to shear stress between projected rocks. In 

tensile failure mode (impact crushing), the rock 

possessing higher stress over stress needed to achieve 

fracture has great tendency to break rapidly producing 

smaller rock sizes and shapes. In the final mode; shear 

failure (attrition mode), the rocks are broken due to 

particle-particle interaction producing great part of fine 

size rocks. The later mode can occur when too fast 

feeding of a crusher is applied which is usually 

undesirable. Crushing in closed circuit operations 
produce more undesirable fine material than do open 

circuit operations. The crushing action comes from 

stresses applied to rock particles by moving parts of the 

machine.  

One of the most famous and old crushers is the jaw 

crusher. Jaw crushers are in practical usage for about 175 

years. There are different jaw crushers that can be 

distinguished by the presence of two plates where 

crushed materials are fed between them. One of these 

plates is fixed while the other swings. Jaw crushers are 

classified according to the location of this pivoted 
swinging plate into Blake, Dodge, and Universal 

crushers. The Blake crusher is considered the most 

common one, in which the swinging plate is pivoted at 

the top [2]. This crusher can be realized in two forms as 

double toggle and single toggle. Due to its simplicity, 

lower cost, and its higher efficiency, the single toggle jaw 

crusher is the most realized form in new applications. 

Jaw crushers achieve size reduction mainly by 

compressing particles between relatively slow moving, 

inclined surfaces. The material being fed into the 

machine enters from above, where the crushing surfaces 
are furthest apart, and is crushed into smaller fragments 

as it descends into the narrowest zone of crushing and is 

finally discharged by gravity.  

The crushing surface in a jaw crusher consists of two 

rectangular plates, one fixed crushing face and an 

inclined mobile face, which moves a small distance back 

and forth from the fixed face. The major variables in jaw 

crushing are the angle of the jaws, rate of jaw movement, 
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displacement of the mobile plate, and the distance between 

the jaws at the discharge end, which controls the product 

size as shown in Fig.1 where CSS is the closed Side 

Setting and  OSS is the  open side setting  [3]. 

CSS
Throw

OSS

Gap

Eccentric shaft

Fig. 1 Kinematic of single jaw crusher  [3] 

 

Several studies have dealt with the size reduction 
focusing on developing a theory, or criterion, that would 

be useful during the selection and evaluation of crushing 

equipment. However, none of these studies has satisfactory 

neither successfully predicted the power consumption; 

major source of running cost in crushing equipment. 

Donovan [3] provided deep historical review on the most 

proposed physical basis regarding criteria of crusher 

selection, prediction of crusher performance, laws of 

comminution, mechanisms of rock fracturing, and the 

corresponding application. As stated by Donovan [3], 

among common laws of comminution, theories proposed 
by Von Rittinger in 1867, Kick in 1883, and Bond in 1952 

were found to demonstrate properly the relation between 

product size reduction and the corresponding required 

input energy throughout the main three laws of 

comminution. The essential problem within these theories 

is their limited range of applicability as they were based on 

empirical equations fitted from experimental data applied 

in certain cases. Eloranta [4] used Bond’s theory to 

estimate the crusher power consumption and recorded 

240% higher predicted power than the actual value. Thus, 

it is important to consider data provided by the crusher 

manufacturers and designers who may rely on other 
methods to size and select crushing equipment for specific 

blasting operation. Bearman et.al. [5] stated that, these 

methods are subjected to individual judgment of an 

individual which leads to conservative over-design of 

crushers, so additional improvement efforts shall be paid 

to include rock fracture toughness in addition to all factors 

in the real crushing plant to be able to predict the corrected 

input power. 

During the last decades, most of cited work regarding 

rock blasting focused on the physics of particle fracture in 

addition to the material properties relevant to 
fragmentation during the crushing process. Single particle 

breakage was used with the objective of relating breakage 

pattern and nature of broken material to the resultant 

fragmented size distribution. Studies using single particle 

breakage lead to the development of mathematical models 

describing the size reduction of different breakage 

materials. These efforts can be extended to relate the 

fracture consumption energy and produced broken size 

distribution to the physical property of the broken 
material. 

In attempt to link the energy consumption and 

performance to the major rock properties of crushing 

system, Bearman et al. [6] performed massive tests. The 
work provided an empirical relationship between number 

of rock strength properties and the crusher power 

consumption as well as the produced broken size for a 

cone crusher. In this work, the fracture properties of the 

rock material were characterized in terms of rock particle 

strength, breakage energy, and the broken particles 

fragment size distribution. Any inefficiency in crusher 

power consumption within these energy intensive 

equipment leads to the loss of billions of kilowatt-hours 

of electricity per year [7]. So the most valuable step to 

reduce this power consumption is to properly improve 

comminution no matter the applied technology to realize 
the crushing process [8]. The improvements in feed size 

operation leads to beneficial optimization in the 

performance due to lowering of the system capital costs, 

reducing unit operating costs, and increasing of plant 

productivity [8]. The use of inefficient crushers may lead 

to many troubles as the process quality may depend 

mainly on the quality of crushers to feed the downstream 

process with product in acceptable reduced size [9]. Thus 

the necessity to optimize performance and power 

consumption of primary crusher to reduce the operating 

costs of quarrying tools is urgent [10].  
To optimize crushing energy efficiency, proper 

modeling relating the stone strength and jaw crusher 

parameters to successfully estimate the power 

consumption is required. Modeling based on energy 

consumption data is accomplished by soft computing 

tools ([11] - [13]). These soft computing techniques are 

useful to provide accurate mathematical relations rather 

than computing techniques when exact relations are not 

available ([14], [15]). Two famous forms of artificial 

intelligence; including Neural networks and belief 

networks, were used to enhance the developed models of 
onsite aggregation system [11]. ANFIS is one of these 

soft computing techniques playing great role in modeling 

accurate input–output matrix relationship. ANFIS is ideal 

to predict specific energy consumption based on input 

predictor variables in the process of jaw crushing. 

As the reducing size process depends on different 

performance characteristics of crusher as well as different 

properties of the feeding rocks, the objective of the 

current work is to properly combine these parameters to 

achieve low required power consumption while the 

product quality is high for sustainable production 

process. In this work, power consumption of jaw crusher 
is predicted to provide specific reduced rock size with the 

help of ANFIS modelling; as one of the computing 

techniques playing great importance in modelling the 

input-output parameters relationship. In the next 

subsection details of AFNFIS model is introduced, then 

results of calculations are presented, discussed, and 

compared with real data of applied crusher to determine 

the level of accuracy to predict the required power to be 

consumed by the crusher.  
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2. ANFIS modeling 
 

ANFIS is a neural-fuzzy inference computing system 

based on adaptive neural network. With the help of hybrid 

learning sequence, ANFIS is used to generate input – 

output relations considering fuzzy if-then rules to provide 

different membership functions. The parameters of each 

function are determined by ANFIS modelling to follow 

known experimental input-output data. 
ANFIS uses five network layers to achieve the 

following fuzzy interpretation steps as shown in Fig. 2. 

Where layer (1) is the input parameters, (2) is the fuzzy set 

database layer, (3) is the fuzzy rule base structure layer, (4) 

is the decision making layer, and (5) is the output 

defuzzification layer; more information are available in 

literature [16 - 19].  

 
 

Fig. 2 ANFIS architecture for a two input Sugeno fuzzy 

model. 

The system can be explained in terms of two suggested 

rules and two verbal values for each input considering the 
following five layers: 

Layer 1: where the output is the step to make given input 

satisfies the linguistic label corresponding to current node. 

in this layer, Gaussian membership functions are used to 

represent verbal terms as connection of the aggregate 

production limits, see in Fig. 3. 

 

 

 
Fig. 3 Initial and final membership functions of stone strength 

(s); a) initial, b) final 

 

First parameter membership function 

    (1) 

Second parameter membership function:  

    (2) 

Where {ai1, ai2, bi1, bi2} are the parameter set. 
As the values of these limits modification, the functions 

shapes vary consequently as shown in Fig. 3b, displaying 

several shapes of membership functions on linguistic tags 

Ai and Bi. Parameters in this layer are denoted as attitude 

parameters. 

Layer 2 each node calculates the firing forte of the 

related rule. Here, nodes are named the rule nodes. The 
outputs of top and bottommost neurons are as follow: 

Top neuron α1 = A1(x) × B1(y)  (3) 

Bottom neuron  α2 = A2(x) × B2(y)   (4) 

Layer 3 every node in this layer is considered by N 

to indicate the regulation of the firing levels. The output 

of top and bottom neuron is normalized as follow: 

Top neuron 

    

(5) 

Bottom neuron    (6) 

Layer 4 provides the top and bottom neuron outputs 

as the product of normalized firing level and individual 

rule output of first and second rule respectively. 

Top neuron

  

β1z1 = β1 (a1x + b1y)   (7) 

Bottom neuron β2z2 = β2 (a2x + b2y)   (8) 

Layer 5 where the system overall output is 

determined by each node as the sum of all incoming 

signals, i.e. 

z = β1z1 + β2z2    (9) 

here the hybrid neural net of parameters (that 

determine the shape of membership functions) are 

learned after providing the crisp training set {(xk, yk), k 

= 1, . . . ,K}. The corresponding error function for pattern 
k is determined by 

Ek = (yk − ok)2   (10) 

Where yk is the desired output and ok is the computed 
output by the hybrid neural net. 

ANFIS model was built in MATLAB using set of 32 

readings (provided in Table 1). Different membership 

functions were used to learn ANFIS; among of them two 

functions of closed side set, gape, and reduction ratio and 

four functions of the rock strength were selected to 

generate ANFIS model. 

 

From Gaussian membership function, the lowermost 

error of power consumption is determined to be 
implemented for ANFIS training. The fuzzy rule 

construction of ANFIS when Gaussian membership 

function is adopted consists of 32 fuzzy rules produced 

from the input-output data set based on the Sugeno fuzzy 

model as shown in Fig. 4.  

 

 
Fig. 4 Fuzzy role architecture of the gaussian membership 

function 
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Table 1 Measured power consumption at different crushing 
conditions 

NO. 

REDUCTION 

RATIOS 

GAPE 

(mm) 

CSS 

(mm) 

STRE-

NGTH 

POWER 

CONSU-

MPTION 

kwh/t 

1 

1.5 284 31.75 

5.697 0.103 

2 7.798 0.161 

3 18.576 0.02 

4 9.899 0.094 

5 22.493 0.018 

6 12.931 0.001 

7 9.994 0.008 

8 26.662 0.16 

9 9.211 0.139 

10 7.067 0.045 

11 8.893 0.141 

12 12.96 0.198 

13 11.293 0.208 

14 11.461 0.149 

15 10.008 0.11 

16 8.71 0.079 

17 

2.97 224 16 

6.097 0.106 

18 7.205 0.213 

19 9.098 0.23 

20 11.99 0.359 

21 12.598 0.307 

22 6.567 0.321 

23 6.696 0.138 

24 12.129 0.091 

25 10.558 0.178 

26 18.164 0.169 

27 13.233 0.169 

28    13.902 0.313 

29 

   

12.874 0.454 

30 12.269 0.212 

31 9.72 0.282 

32 4.863 0.148 

 

 

During training, the 32 performance measure values 

(training data set) were used to conduct 500 cycles of 

learning with an average error of 0.0755 as shown in Fig. 5.  

 
Fig. 5 Relative error 

in the estimation of power consumption 

3. Discussion 
Figure 3a, b illustrates the original and the last 

membership functions of the stone strength. It is noticed 

that, tuning the final membership function leads to 

remarkable changes in low and high areas, but in low and 

medium areas there is minor changes. The major changes 

in the very low and high areas indicate that all ranges of 

stone strength have different effect on energy 

consumption (E). Also, Fig. 3 shows that stone strength 

had the greatest impact on energy consumption. 

Figures 6 and 7 show the effects of the crushing 

parameters and stone material properties on energy 

consumption. According to Fig. 6 and 7 reduction ratio 

(RR), gap (G), and stone strength (S) have considerable 
effect on energy consumption, while closed side set (CSS) 

have a minor effect on energy consumption. 

 
Fig. 6 Energy (E) in relation to change of closed side set 

(CSS) and Strength (S) 

In Fig. 6 at low strength level, it can be seen that the 

closed side set does not have a considerable effect such as 

at high level of strength, the consumption energy increases 

with increasing the closed side set. Moreover, it’s clear that 

the energy consumption increases with the decrease of 

stone strength. 

 
Fig. 7 Energy (E) in relation to change of Gape (G) and 

Reduction ratio (RR) 

Figure 7 shows that the resultant energy consumption 

decreases with increasing gape width for all ranges of 

reduction ratio. But at gap ranging from 230 to 250 mm, the 

energy consumption increases with increasing the reduction 

ratio for all range of reduction ratio. 

4. Model verification 
The predicted power consumption (Ep) versus measured 

power (Em) consumption from real case study are 

compared in Table 2 and Figure 8.  

The group of real data comprised of eight cases was used 

to run ANFIS, then ANFIS provides the predicted power 

consumption. Then attained Ep by ANFIS is compared 

with the measured Em. It is clear noticed that, the 

maximum deviation is less than 6.5%, thus ANFIS model 
provides comparable value of power consumption very 

close to the actual values. 

The error percent Ei for any sample of data i (i varied 

from 1 to m, here m=8) between the predicted values of 
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energy by ANFIS model (Epi) and the measured values 

(Emi) is estimated from the following equation: 

   (11) 

 

 
Fig. 8 Error bars for the predicted energy with the help of 

ANFIS model versus the measured energy values for different 
test data 

 

while the corresponding average error percent Eav is 

computed using the following relation: 

     (12) 

 

\Table 2: The ANFIS predicted powers versus the measured 
power consumed by jaw crusher 

Test 

No. 

PARAMETERS 

POWER 

CONSUMPTION 

kwh/t ERROR  

(%) 

RR 
Gape  

(mm) 

CSS 

 
(mm) 

S 

 
(MPa) 

Measured  

E 

Predicted 

 E 

1 

1.5 284 31.75 

21.666 0.197 0.185 6.09 

2 8.33 0.114 0.109 4.39 

3 6.286 0.06 0.061 1.67 

4 8.069 0.094 0.1 6.38 

5 

2.97 224 16 

4.897 0.033 0.034 3.03 

6 8.071 0.152 0.153 0.66 

7 8.635 0.336 0.351 4.46 

8 11.021 0.379 0.366 3.43 

   Average Error 3.76 

 
Based on the average error percent provided in Table 2, 

ANFIS model successes to predict the power consumption 

with 3.67% deviation from the measured data. Thus, 

ANFIS model with gaussmf has accuracy more than 96% 

to predict energy consumed by jaw crusher.  

5. Conclusion 
In this study, the ANFIS model with gaussmf was utilized 

to obtain an accuracy relation for estimating the power 

consumption of a jaw crusher. The closed side set, gap, stone 

strength, and intended reduction ratio are among the 
predictor input inputs. The ANFIS model was created using a 

set of 32 particular energy consumption values measured 

under varied crushing settings. 

The adequacy of the proposed model to provide the precise 

energy usage was next evaluated using another set of 8 

collected data. The ANFIS model with gaussmf has a high 

level of accuracy (more than 96%) for predicting the 

specific energy consumption of jaw crushers, according to 

the average error percent.  
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