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Abstract. Distribution System State Estimation has great 

potential in the integration process of renewable energies, energy 

storage and active participation of the customers. The 

international state of the art pilot projects showed that there are 

many use cases, such as indication of operational limit violations 

and enhancing strategic development and asset management by 

useful in-depth information about the electrical behaviour of the 

system. However, the concept of state estimation at the 

distribution level is still a developing research area due to the 

structural differences of the network structure and parameters 

from the transmission applications which is also discussed in 

detail. Based on the value proposition identified through the 

literature review, simulation studies are carried out on 

distribution test system with different scenarios based on 

renewable penetration levels and measurement data availability. 

The main contribution of this research is a conceptual overview 

of the possible application of distribution system state estimation 

and validation of the operation on a case study, which could 

serve as a foundation for testing the proposed viable use-cases. 
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1. Introduction 

 
Nowadays, distribution system operators (DSOs) face 

challenges in the integration of numerous new 

technologies and processes. Distributed generation (DG) 

brings structural changes in the generation mix by 

connecting to the medium voltage (MV) and low voltage 

(LV) networks. The active participation of customers 

through demand side management (DSM) processes – 

either controlled in active systems or incentivized by tariff 

schemes – with the presence of new, significant electric 

power consumers (e-mobility chargers and heat pumps) 

basically change the load behaviour. Distributed energy 

storage systems also appear due to the more competitive 

nature of the renewable support schemes. These trends 

point toward an active distribution system (DS), therefore 

more sophisticated operation and control approaches are 

inevitable. 

One of the most promising directions in developments is 

the application of state estimation (SE) which is by 

definition “a data processing algorithm for converting 

redundant meter readings and other available information 

into an estimate of the state of an electric power system” 

[1]. Distribution system state estimation (DSSE) has 

great potential to increase observability and 

controllability at DS level, while still have many open 

questions [2] and characteristic differences compared to 

the widely used high voltage (HV) transmission system 

state estimation (TSSE), as will be discussed in in this 

paper. 

Due to the limited measurement coverage of the DS, 

early studies were published in the 90’s. These papers 

have already used pseudo measurements to satisfy 

observability criteria [3][4]. 

If there are multiple sources of erroneous measurements 

or the redundancy is insufficient, the state estimation 

usually fails to converge. For that reason, the input set is 

synthetically expanded by introducing pseudo-

measurements, which are created according to the 

network’s historical data by using some of the 

probabilistic and neural networks-based methodologies 

[5][6]. 

Then observability analysis aims to determine whether a 

state estimation solution for the specific system exists, 

the state variables can be calculated from the available 

measurement set. Moreover, this procedure identifies 

unobservable parts of the network which are a 

consequence of bad or missing data [1].  

There are several different observability approaches, 

which can be divided into probabilistic [7][8] and 

machine learning based approaches [9]. All these 

methods rely on changing the bad data into pseudo-

measurements generated by the different techniques. 

If the network is adequately defined, the state estimation 

solver serves to find an optimal solution for the system 

states according to the network model constraints and 

given measurements. The optimal solution essentially 

comprises of a vector of complex bus voltages, from 

which estimates are calculated for other network values. 

The linear optimization solver usually includes a linear 

optimization problem (e.g. Weighted Least Squares) and 

an iterative objective function minimizer [10][11]. 

This research summarizes state of the art DSSE practical 

approaches from a conceptual point of view and validates 

the application for possible use cases through simulation 
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studies with different scenarios. The paper is organized as 

follows: section 2. briefs an overview of practical 

application examples, while section 3. introduces the 

DSSE methodology aspects and the modelling 

considerations of this study. Section 4. describes the 

simulation scenarios and results, and Section 5. 

summarizes the main conclusions. 

 

2. International Examples 

 

Research institutes and DSOs around the world already 

work on pilot applications of DSSE with promising results. 

Firstly, a French project called evolvDSO is introduced, 

where two novel algorithms were developed to apply 

DSSE in MV and LV networks for Enedis DSO. [13]  

This tool is useful for both the transmission system 

operator (TSO) and DSO, as the calculation of flexibility 

ranges at primary substation level, while also providing 

voltage profiles for the considered LV network by using 

artificial neural networks.  

The MV level algorithm called interval constrained power 

flow improves the system security by estimating the 

available flexibility for the following day. The algorithms 

considers the planned switching state (topology), the local 

consumption and generation forecasts, grid and asset 

constraints, flexibility resources (on-load tap changing 

transformers, static reactive power control devices, firm 

and non-firm connection contracts and market based bids 

from MV generators and battery storage systems) available 

at DSO level and the associated costs.  

The tests showed positive results as the tool fulfilled the 

expectations, provided the range and place of flexibility in 

a reasonable time. The LV tool evaluates the voltage 

profile of an MV/LV supply area (around 1250 LV 

customers) using historical measurements and assumptions 

for forecasts. 

The algorithm is a neural network-based approach and 

uses the phase connection data for customers, smart meter 

voltage and power measurements from an 18-month 

period. The analysis also considers the optimal number 

and placement of real-time measurement data usage. The 

calculations seem to have acceptable level of error, 

however the photovoltaic (PV) generation was neglected. 

The main lessons learned are that synchronism of the 

measurements is critical, while only 1 real-time 

measurement per feeder per phase is sufficient for the 

majority of improvement in accuracy, and the sensitivity 

for placement is low. As a possible future work, the 

authors propose to use PV data and enhance synchronism 

of measurements which is clearly critical. 

In a Scottish pilot project from Orkney Isles a new error 

estimation technique was proposed. [14] The main 

motivation behind the project was the growing share of 

DG (mainly wind – which has a capacity factor of 40% in 

the area and also wave and tidal energy from the local 

European Marine Energy Centre) in the area.  

The focus was to find an appropriate mix of measurement 

and pseudo-measurement with acceptable error rates. The 

constraints were twofold: on one hand it was usually 

thermal limits before the DG level increase, but on the 

other hand voltage variations also became problematic 

since then. The network model had 70 buses and 76 

branches, from which 15 busbar voltages and 30 current 

flows were visible and with a small number of pseudo-

measurements, 100% visibility was reached at the MV 

level. As a result, the DSO have been connected further 

20 MW of DG to a network that said to have reached the 

hosting capacity limits. 

A novel decoupled method for the power flow equations 

is used in DSSE algorithms by using the characteristics 

of a usual DS, namely the high R/X ratio. [15] Therefore, 

the system is the opposite of TS – the relation between 

active power and the angle (P-θ) and the reactive power 

and voltage (Q-V) due to the reactive lines can be 

transformed into a P-V and Q- θ in this case.  

The authors tested the method on a Slovenian unbalanced 

network example and compared the classical WLS to the 

simplified (decoupled) WLS. The proposed method has 

significantly reduced computation time (around -46%) 

while the errors remained the same. 

An intriguing example of LV DSSE based on smart 

meter data is the SmartSCADA project in Kaiserslautern, 

Germany [16]. The assumption was that the smart meters 

at the residential customers could offer enough visibility 

for the DSSE. The LV network consisted of 120 loads 

and 24 PV generators, and 110 smart meters were 

installed with the possibility to send voltage, current 

magnitudes as well as active and reactive powers through 

power line communication. A linear algorithm was 

developed to reduce to computation burden caused by the 

need for a three-phase estimation to calculate each phase 

correctly, with the assumption that the relative angles are 

constant and symmetrical, only magnitude differences are 

possible.  

Plausibility checks are also included from operational 

constraints such as maximum line current of the fuses. 

The field test results showed promising results, the 

voltage magnitude estimation accuracy was within a 

range of +/- 1.4 V, which is enough precision to localize 

possible voltage limit violations on the grid. The 

increased measurement redundancy due to the smart 

meter rollout leaded to a conclusion that the erroneous 

measurements can be detected in the voltage, and most 

cases in the current as well (only low loading condition is 

problematic for the proposed algorithm). 

Another German example is from Aachen, where an in-

field test of meter placement and application of different 

DSSE algorithms were carried out at MV level [17]. The 

main scope of the project was to handle the observability 

problem by the lack of reliable measurement points. 

Pseudo-measurements were generated from different 

data, such as load profile databases, weather data, 

distributed generation nominal values and historical 

values (e.g. highest load), while the error was calculated 

by Monte Carlo simulation approach.  

The scope was to reach the limits defined by EN50160 

standard (99% quantile for voltage, 95% quantile for 

current estimation errors). The meter placement was 

carried out by a genetic algorithm with the objective 

function to minimize the investment costs.  

The tests were carried out at an MV network with 14 

MV/LV substations, where 13 of them had measurements 

from three-phase currents, voltages, active and reactive 

power. Different communication technologies were used 

(Modbus RTU RS485, power line communication and 

radio) to reach a central protocol converter, then IEC 
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61850 will be the final solution at the end of the pilot. The 

error from the historical highest load pseudo-

measurements was high (around 29%), while the enhanced 

pseudo-measurements (considering the effects of 

distributed generation) brought it down to 5% average. 

As a summary, the above-mentioned projects offer viable 

use-cases with pilot application results, such as flexibility 

range calculation and voltage limit violation indication 

[13], distributed generation hosting capacity increase [14]. 

Different approaches are present to generate pseudo-

measurements, such as using historical data, predicted load 

and generation profiles and weather data. The impedance 

characteristics [15], availability of useful data from smart 

meters around the grid [16] and the effects of distributed 

generation [17] are all challenges in the practical 

application. 

 

3. Methodology 

 

DSSE differs highly from TSSE, therefore the appropriate 

methods are also distinct. This section summarizes the 

main challenges, compare the possible algorithms and 

propose a feasible modelling approach to analyse use 

cases. 

 

A. Theoretical challenges of DSSE 

 

An obvious speciality of DSSE is the observability 

problem: unlike the transmission level, where usually 

almost all of the bus voltages are measured, DS has much 

lower observability level – it is a common practice that 

only the HV/MV substations provide reliable data, while 

MV and LV network parts are not visible real time for the 

operators. Communication systems also constrain DSSE 

due to bandwidth, transfer capacity and endpoint handling 

limits and cybersecurity issues [18]. So, the first challenge 

is to deal with the limited availability of measurement 

points due to the limited amount of data and increased 

uncertainty. Different solution approaches, such as the use 

of pseudo-measurements (e.g. pseudo power injections at 

feeder buses with Gaussian distributions with their means 

at half the transformer rating etc.), smart meter data (which 

has considerable delays) and virtual measurements (e.g. 

zero power flows on open switches etc.) was introduced in 

the literature to handle this issue [3]. 

The topological attributes of DS are also important to 

consider, such as [1][2][16][19]: 

• the high R/X value (resistance to reactance ratio) 

which means that conventional direct current 

(DC) (where resistances are neglected in the 

calculations to increase computing speed) SE 

algorithms are unusable 

• higher complexity due to the unbalances in the 

system, 

• much larger network with model uncertainties, 

• low amount of data about the exact connecting 

elements, such as distributed generation and 

individual loads. 

These challenges need adequate, robust estimation 

algorithms which are suitable to handle the diverse sources 

of data beside the high uncertainty and complexity, 

therefore DSSE is still an intriguing research field. 

B. Comparison of SE algorithms 

 

Based on timing, evolution and purpose of the actual 

estimation, SE methods can be classified into different 

categories. Table I. summarizes some of the most 

common mathematical methods with the main 

advantages and disadvantages. 

 
Table I. – Summarization of the advantages and disadvantages 

of different SE methods [20][21][22] 

 

Method Pros and Cons 

Weighted Least 

Square (WLS) 

(+) Fast, simple, widely-used, 

(-) Sensitive to bad data 

Least Median of 

Squares (LMS) 

(+) Robust against bad data and leverage 

points, 

(-) High computational cost, high 

redundancy requirements 

Least Trimmed 

Squares (LTS) 

(+) Robust against bad data, 

(-) High computational cost and memory 

requirement 

Least Absolute 

Value (LAV) 

(+) Robust against bad data, small 

sensitivity to line impedance uncertainty, 

(-) High computational cost, sensitivity to 

leverage points and measurement 

uncertainty 

Generalized 

Maximum 

Likelihood 

(GM) 

(+) Robust against bad data, 

(-) Parameter selection sensitivity 

 

Softwares used for power system analysis (DigSilent 

Power Factory, NEPLAN, PSS/E etc.) have the 

possibility to use different calculation methods of SE. 

While WLS has the disadvantage in robustness, it is still 

a fast and widely-used approach and going to be used in 

this study too. In the case of a DSSE solution is tailored 

to a practical application, other algorithms should be 

considered. 

 

C. Modelling approach 

 

The scope of this research is to validate the concept of 

DSSE as a useful tool to enhance the value propositions 

which are considered viable from the pilot projects 

through simulation studies. The paper investigates the 

practical challenge of SE simulation studies the lack of 

grid/load measurements. The model represents a usual 

MV/LV transformer area of Hungary, derived from the 

local DSO’s anonymous and aggregated dataset as 

follows: 

• topology, impedance parameters and ratings, 

• active and reactive power flows on the terminal, 

• measurement data (voltage, current), 

characteristics and locations at the end of the 

circuits and on the terminal. 

The first step is to create a static DSSE which is able to 

create reliable models for symmetric alternating current 

(AC) load flow calculations. Based on the literature 

examples given in section 2, the inclusion of DG and the 

availability of measurements for appropriate 

observability and possible simplifications to reduce 

computation time is also considered. This means that the 

main contribution of this research is the application on an 
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exact LV network, assessment of field measurements and 

usual circumstances providing useful conclusions for the 

DSO. 

The topology was built based on the database (transformer 

parameters, line length and impedances, load and 

generation connection points, rated powers). Generators 

are static ones with unity power factor, loads are modelled 

as constant power (consumption does not depend on node 

voltage) using the regular impedance-current-power (ZIP) 

static models. LV protection devices (fuses) are also 

included in the model with ratings. Built-in WLS DSSE 

algorithm was used in DigSilent PowerFactory 19. 

The main limitations of this case study are the following: 

• only some special system states are analysed, the 

effect of time sweep calculation is not discussed, 

nor any dynamics 

• balanced network conditions mean that 

asymmetry is neglected. 

However, future work could include the analysis of 

stochastic load and generation profiles. Based on the 

measurements, modelling of unbalanced conditions is also 

possible. 

4. Simulation studies 
 

In this section, the simulation scenarios and the results are 

introduced in detail. The test system is the supply area of 

an MV/LV transformer (depicted in Fig. 1.). Table II. 

summarizes the main topological parameters of the 

location. The load and generation profiles are assigned 

from a predefined database of the DSO’s define. For the 

simulations, DigSilent Powerfactory 19 software was used. 

This location perfectly represents a usual developing small 

town in Hungary. Distributed generation is already present 

at the location, 12 PV systems are operating in the MV/LV 

area.  

 

 
Fig.1. Topology of the considered test system 

 

Table II. – Main topological parameters 

 

Circuit 

Total 

length 

[m] 

Number of 

customers 

[-] 

Number 

of PV 

systems 

[-] 

Cumulative 

PV power 

(kWp) 

1 407 32 1 2 

2 620 51 7 37.2 

3 940 54 0 0 

4 952 71 4 26.3 

There are available measurements from the LV terminal 

of the transformer (voltage, current magnitude, active and 

reactive power) and the endpoints of circuit 1,2 and 4 

(voltage magnitude). 12 PV systems are operating at the 

site currently, 7 of them on the B2 circuit, therefore the 

effects of the DG are mostly visible at that network part. 

B4 is the longest with the most customers, so the voltage 

drop is the largest at that part. Fig 2. represents the 

measured voltage values. The time-step of the 

measurement was 10 min, and the values were averaged 

(3 samples for the same day from the 3-week 

measurement period). This dataset was used as an input 

for the DSSE algorithm of PowerFactory. 

Since the data about phase connections for both loads and 

generations is unavailable, balanced conditions were 

assumed. However, using further measurements and a 

location check it would be possible to extend the model 

to unbalanced studies. From the load database a high load 

condition was composed, the power factor of the loads is 

constant 0.95.  

Based on the measurements that could be considered as 

daytime at the location. Therefore, the PV systems could 

be modelled with the kWp infeed expecting optimal 

operating conditions to maximum effect of the DG. A 

unity power factor was considered, this is the defined 

values in the grid codes and regulations for household-

sized DG (under 50 kVA) in Hungary. There are 3 

different overhead lines, 2 4×95mm2 diameter with the 

R/X ratio of 4.38 and 0.915, and the 4×50mm2 diameter 

with 1.6 respectively. These R/X ratios mean that the 

decoupling of P-Q flows cannot be modelled by 

impedance simplifications here in the case of LV 

overhead lines. 

 

 
Fig.2. Averaged measured values from the location 

 

There are two study cases with respect to the nature of 

measurement data which were considered: 

• base case behaviour of the DS, 

• increased number of PV generators 

The scenarios are assigned with pseudo-measurement 

techniques as well to create the DSSE. The simulations 

aim check the distribution system state estimation 

capabilities of the Newton-Raphson calculation to solve 

the minimization problem by using Lagrange multipliers. 
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Each of the two case studies includes three already defined 

major SE functionalities, namely Plausibility check, 

Observability Analysis and Bad Data Detection. 

The State Estimator function of PowerFactory provides 

consistent load flow results for an entire power system, 

based on real time measurements, manually entered data 

and the physical constraints of network model topology. 

A sufficient network parametrization requires both 

metered node data and power flows of energy producer 

and consumer entities. In this paper a practically common 

incomplete metered dataset was used. The system operator 

provided metered power, voltage and current data from the 

endpoints of circuits and the MV/LV transformer terminal. 

For this reason, a household load prediction procedure was 

used to estimate household pseudo measurement values 

which represents the actual network state.  

A normalized load profile database was used, the loads 

were paired with each profile using a random shuffle 

algorithm implemented in MATLAB. Then the similar 

point of time load was used as a pseudo measurement 

value for each load. The DG entities were parametrized the 

same way using normalized solar power generation 

profiles. 

 

A. High load case study 

 

The first case scenario introduces a base simulation of the 

described LV network without photovoltaic power 

generation and high energy demand. Due to the large 

number of implemented loads only circuit 1 is detailed in 

this paper. The state estimation results represent the grid 

condition on a weekday at 15:30. Fig. 3 depicts the load P 

estimation differences (blue) using load flow and state 

estimation, practically this graph reveals the accuracy of 

the load profile generation too. Table III. contains 

information to assess the relative deviation of state 

estimation regarding load flow results.  

 

B. Increased number of PV generators 

 

Due to the integration of intermittent distributed 

generation and bidirectional power flows distribution 

system states have become more dynamic. For this 

reason, the second scenario represents a 20% PV 

penetrated grid case, namely 20% of nominal load is 

covered by installed PV capacities on the grid. The 

results are depicted in Fig. 3. using orange bar color. 

As it is seen both cases show a relatively good 

approximately 18% average load estimation accuracy 

without using any complex (e.g neural networks) load 

forecast methods. The simulation results prove the 

preconception that the introduced pseudo measurement 

prediction method generates reliable dataset without 

outlier values. 

 

5. Conclusions and remarks 
 

This research evaluates the concept of DSSE by 

summarizing the experiences from current pilot projects 

and comparing the theoretical approaches from the 

current literature. Due to the increasing need for 

controllability and visibility of distribution systems, 

DSSE applications have many use cases, such as: 

• integrating weather data for forecasting and 

smart meters, 

• indicating operational limit violations, such as 

unacceptable voltage values, overloading, 

Fig.3. Load flow and State estimation difference on each node 

Table III. – Relative state estimation error on each node 

Node no. 685 690 878 879 880 881 882 883 884 1004 1006 1007 1008 1009 1010

High load 3.80% 20.22% 23.52% -18.64% -35.87% 26.11% -9.98% -20.16% 0.78% -13.28% -29.16% -3.82% 30.18% 30.08% 3.82%

20% PV 3.73% 20.11% 23.48% -18.70% -35.27% 26.03% -10.09% -20.22% -2.52% -13.34% -29.19% -4.07% 30.07% 29.97% 3.79%

Node no. 1012 1013 1014 1015 1017 1018 1019 1050 1185 1187 1188 1625 1867 5226

High load 20.16% 23.54% -18.67% -35.72% 26.08% -9.69% -20.08% -13.30% -29.14% -3.86% 30.18% 30.06% 3.84% 31.29%

20% PV 20.11% 23.47% -19.00% -35.76% 26.03% -9.73% -20.15% -13.34% -29.25% -3.92% 30.11% 30.03% 3.76% 23.44%
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• offering in-depth, standardized data structures for 

planning and development studies, 

• providing input for smart asset management 

calculations. 

The main purpose of this research is to validate use the 

DSSE process on a test system with appropriate modelling 

assumptions to support further studies and provide an 

application environment for DSO use-cases. Other 

contributions are further discussions on recently published 

pilot projects from the viewpoint of comparability and 

replicability, while also adding valuable analysis on the 

current directions and open questions regarding DSSE. 

The results of the simulation studies offer applicable 

results on the effects of visibility (measurement 

availability constraints) and provide a fundamental 

conceptual analysis for further in-depth use-case analysis. 
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